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CDM-MPC: An Integrated Dynamic Planning and
Control Framework for Bipedal Robots Jumping

Zhicheng He, Jiayang Wu, Jingwen Zhang, Shibowen Zhang, Yapeng Shi,
Hangxin Liu, Lining Sun, Yao Su, Member, IEEE, and Xiaokun Leng

Abstract—Performing acrobatic maneuvers like dynamic
jumping in bipedal robots presents significant challenges in
terms of actuation, motion planning, and control. Traditional
approaches to these tasks often simplify dynamics to enhance
computational efficiency, potentially overlooking critical factors
such as the control of centroidal angular momentum (CAM)
and the variability of centroidal composite rigid body inertia
(CCRBI). This paper introduces a novel integrated dynamic plan-
ning and control framework, termed centroidal dynamics model-
based model predictive control (CDM-MPC), designed for robust
jumping control that fully considers centroidal momentum and
non-constant CCRBI. The framework comprises an optimization-
based kinodynamic motion planner and an MPC controller for
real-time trajectory tracking and replanning. Additionally, a
centroidal momentum-based inverse kinematics (IK) solver and
a landing heuristic controller are developed to ensure stability
during high-impact landings. The efficacy of the CDM-MPC
framework is validated through extensive testing on the full-sized
humanoid robot KUAVO in both simulations and experiments.

Index Terms—Jumping control, model predictive control,
bipedal robot, optimization, acrobatic motion planning

I. INTRODUCTION

CHIEVING acrobatic motions, a significant challenge

in bipedal robotics, requires not only powerful robot
actuators [!,2] but also sophisticated motion planning and
control algorithms [3,4]. Unlike the control of walking or
running—where the centroidal angular momentum (CAM)
is typically overlooked to simplify the highly nonlinear multi-
body dynamics using models like linear inverted pendu-
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Fig. 1: The proposed integrated dynamic planning and control
framework endows bipedal robots capable of continuously for-
ward jumping. The trajectories of the foot and the torso links are
plotted in thin and bold black lines, respectively.

lum model (LIPM), spring-loaded inverted pendulum model
(SLIPM), or single rigid body model (SRBM) for computa-
tional efficiency, CAM plays a key role in the jumping control
of bipedal robots. This introduces unique challenges and
necessitates additional considerations in the control strategy to
accurately manage CAM throughout the entire process [5, 6].

The dynamic jumping process of bipedal robots, depicted
in Fig. 1, consists of three distinct phases: the launching
phase, the flight phase, and the landing phase. Each phase
poses unique challenges in dynamics planning and control.
Specifically, (i) the launching phase requires an accurate
kinodynamic motion planner to generate trajectories for the
center of mass (CoM) and CAM within the hardware capa-
bilities [7]; (ii) the flight phase necessitates a fast trajectory
replanning scheme to address motor execution errors and
unknown disturbances, alongside an advanced whole-body
control (WBC)-based CAM controller for accurate trajectory
tracking [6, 8]; (iii) the landing phase demands a robust land-
ing controller to preserve platform stability under substantial
impact forces [1, 6].

Researchers have developed various integrated motion plan-
ning and control frameworks [0, 8—11] to address this chal-
lenge. Specifically, Zhang et al. employed CAM for planning
the entire jumping motion with a fixed foothold location and
a heuristic landing planner to compensate for disturbances or
tracking errors [0]. Qi et al. designed a CAM controller based
on LIPM for real-time planning of whole-body dynamics with
predefined CoP [8]. Li et al. utilized a reinforcement learning
(RL)-based approach to establish a robot-specific jumping
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control policy [9]. Saloutos et al. and Mesesan et al. generated
jumping trajectories through trajectory optimization leveraging
full-order dynamics or a 3-D divergent component of motion
(3D-DCM) framework, respectively [10,11]. Despite their
theoretical contributions, these frameworks have not achieved
the continuous jumping of a humanoid robot, which requires
more robustness than a single vertical jumping.

In this study, we introduce a novel integrated dynamic
planning and control framework—centroidal dynamics model-
based model predictive control (CDM-MPC), tailored for
bipedal robot jumping. This framework thoroughly accounts
for the full centroidal momentum while considering non-
constant centroidal composite rigid body inertia (CCRBI) to
achieve precise body pose control. Initially, we formulate an
optimization-based kinodynamic motion planner that concur-
rently optimizes the CAM trajectory, touchdown point, and
contact force trajectories. Subsequently, we design an inno-
vative model predictive control (MPC) controller for precise
trajectory tracking and fast online replanning. Further, we
develop a centroidal momentum-based Inverse Kinematics
(IK) solver to achieve accurate centroidal momentum tracking
and a landing heuristic controller to ensure robust stabilization
during high-impact landings. The efficacy of the proposed
framework is corroborated through rigorous testing on our full-
scale humanoid robot platform, KUAVO, within both realistic
simulation environments and real-world experimental settings.

A. Related Work

MPC-based motion planning/control frameworks have
gained significant attention in recent years due to their capabil-
ity to account for kinematics, dynamics, physical, and contact
constraints through a unified optimization formulation. These
frameworks have demonstrated success across various robotic
configurations, including wheeled robots [ ], UAVs [14],
bipedal robots [, 15, 16], quadruped robots [ 1, and hexa-
pod robots [21,22]. In the realm of bipedal robots, Pratt
et al. first proposed the capture point method to determine
the ideal footstep locations post-disturbance within an MPC
framework [23], albeit lacking consideration of kinematic and
dynamic constraints. Scianca et al. enhanced this approach by
incorporating Zero Moment Point (ZMP), kinematics, and sta-
bility constraints for improved gait generation capability [24],

s

Isometric view Front view

16

q12
< &

Intel NUC -
i7-1165G7
@4.7Ghz

1
m el (€3 )913
qis 11
8Ah 59.2V

Li-ion Battery q"“’ -
MTI630
High Precision
IMU
Multi -circle
Absolute
Value Encoder

Xp)
Ye

CNC
Structural
Part

1.20m

Integrated
Joints
3D Printing
Photosensitive
Resin Shell

Ankle Joint
Motor

Wy 12
NAWgY

T30
)

A

CS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED MAY, 2024

while Brasseur et al. extends the method to a 3D walking sce-
nario with online gait generation. Concurrently optimization of
footstep locations and step time was achieved by a nonlinear
MPC formulation [25]. These methodologies excelled in low-
speed walking scenarios by utilizing simplified models, such
as LIPM and SLIPM for computational efficiency, which is
less suited for dynamic motions where the CAM of the robot
can not be neglected.

To enhance the generation of dynamic motions for legged
robots across various speeds and magnitudes, the centroidal
dynamics model (CDM) was integrated into trajectory opti-
mization formulations [ ]. Specifically, Budhiraja et al.
introduced a formulation to reconcile the CDM with the
complete dynamics model [26]; Ponton et al. employed the
CDM for efficient walking pattern generation [27]; Kwon
et al. utilized the CDM for footstep planning, integrating
a momentum-mapped IK solver to design whole-body mo-
tion [28]. Moreover, the CDM-based real-time MPC frame-
works have been successfully implemented on agile maneuver
control of quadruped robots, considering the constant CCRBI
of the robot [29,30]. In this study, we concentrate on the
jumping control of biped robots while accounting for non-
constant CCRBI. We first derive the relationship between
CCRBI and robot leg length as a constraint, then incorporate
it into a real-time MPC framework to accurately regulate the
body posture of a biped robot during the jumping process.

B. Overview

We organize the remainder of the paper as follows. Sec. II
introduces the kinematics and dynamics model of the sys-
tem. Sec. III describes the dynamical planning and control
framework. Sec. IV presents the simulation and experiment
results with comprehensive evaluations. Finally, we conclude
the paper in Sec. V.

II. PLATFORM MODEL
A. Hardware Introduction

The hardware platform depicted in Fig. 2 is developed
to evaluate the performance of the proposed CDM-MPC
framework. The KUAVO bipedal robot platform stands 1.2 m
in height and weighs 34.5 kg. It incorporates 18 motors: each
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Fig. 2: Hardware design and configuration of the bipedal humanoid robot KUAVO. Each leg contains 5 Degree of Freedoms (DoFs):
3 DoFs for the hip joint, 1 DoF for the knee joint and 1 DoF for the ankle joint.
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TABLE I: Main Physical Parameters of KUAVO Robot

Dimension Parameters

Total mass  Pelvis width ~ Thigh length Calf length Foot length
34.5 [kg] 0.22 [m] 0.23 [m] 0.26 [m] 0.15 [m]
Motion Range & Joint Peak Torque
Hip Yaw Hip Roll Hip Pitch Knee Pitch Ankle Pitch
—90° ~ 60° —30° ~ 75" —30"~120° —120° ~10° —30° ~ 80°
48 [Nm] 110 [Nm] 110 [Nm] 110 [Nm] 48 [Nm]

leg is equipped with 5 DoFs and each arm with 4 DoFs. A
key design innovation implemented to optimize the robot’s
performance involves the strategic placement of the ankle joint
motor at the knee and the knee joint motor at the hip. These
modifications, coupled with linkage mechanisms, are intended
to reduce leg inertia and improve the robot’s maneuverability.
The robot operates in a Linux system with an augmented
real-time kernel patch to prompt the reading of sensor inputs,
the whole system runs on an onboard Intel NUC computer
(Intel Core i7-1165G7@4.7GHz). Notably, all joint actuators
are configured to operate in the torque control mode, ensuring
precise and efficient control. For a comprehensive overview of
the hardware platform’s specifications, please refer to Tab. 1.

B. Dynamics

1) Floating Base Dynamics: The comprehensive dynamics
of a biped robot can be described as:

M(q)g +C(g.4) = AT + (@) fex, (D

where M(q) is the inertia matrix, C (g,q) is the vector of
Coriolis, centrifugal and gravitational forces, 7 is the joint
torque, A is the input mapping matrix, J(q) is the Jacobian
matrix and fe is the external force vector [31]. However,
when utilizing this highly nonlinear multi-body dynamics
model for controller design, computational efficiency becomes
a significant concern. Even with the advanced nonlinear opti-
mizers [32], real-time control applications remain problematic.
2) Centroidal Dynamics: Consequently, the CDM proposed
by Orin et al. [33] is employed in this work, offering a
holistic approach to capturing whole body momentum while
maintaining simplicity. It can be formally written as:

h .
| |- Awi @
where the centroidal momentum vector H € R*! consists of
the angular centroidal momentum h € R3*! and the linear
centroidal momentum ms of the robot. Here, m denotes
the total mass and r € R3*! represents the CoM position,
A e RO*16 s the centroidal momentum matrix (CMM),
g € R'*1 is the generalized position vector. Notably, for
model simplicity the dynamics and control of the arms are
not considered in work, the whole upper body of the robot is
treated as one single body. Therefore, ¢ includes the position
and attitude of the base (6-DoFs), and the 10-DoFs of the legs.

According to Newton’s laws of motion, the rate of change
of angular and linear momentum at the CoM, h and m#, is
equivalent to the resultant effect of all external forces. As
illustrated in Fig. 3, we can have:

iz:(p—r)xfp,
mit = mg + f,

3)

gj r (CoM)
i ?_” m

p(CoP)
Vel
Fig. 3: External forces analysis. In the Oz plane, the robot is
subjected to gravitational force mg and ground reaction force f,.

where mg and f, € R3*! are the gravitational force and
ground reaction force of the robot, respectively. p € R3*!
is the Center of Pressure (CoP) location.

III. DYNAMIC PLANNING & CONTROL FRAMEWORK

Building upon the CDM, we develop the CDM-MPC frame-
work to address the complexities encountered during bipedal
robot jumping in the launching, flight, and landing phases,
as introduced in Sec. I. Our framework consists of four
primary components: (i) an optimization-based kinodynamic
motion planner to produce the CDM trajectory, contact force,
and contact position; (ii) a real-time MPC controller with
CDM for trajectory tracking and fast replanning; (iii) an IK
solver based on centroidal momentum that calculates whole-
body trajectories; (iv) a landing heuristic controller for robust
stabilization. The overall framework is summarized in Fig. 4.

A. Kinodynamic Motion Planning

Assuming each foot has two contact points—the heel and
the toe, with the contact force at each point constrained by a
linearized friction cone comprising four edges, we formulate
the kinodynamic motion planning as a trajectory optimization
problem and define the set of decision variables as:

TN = (g dia]s Tk k] F k] BEags B Fhom Pl ﬁféy

“4)
Vi=1,---,N,,j=1,--- ,Ngk=1,--- ,N} e R¥*N,

where the subscript [k] represents the k' time interval, N
is the total number of timesteps, p' and f?, denote the i'"
contact location and corresponding contact force, N. = 4 is
the number of contact points, 3% represents the portion of the
friction along each edge of the linearized friction pyramid,
N4 = 16 is the total number of these approximated edges.

The kinematic constraints include [3]

Hypy = Alqi)dx)» (52)

Tk = Frqr))s (5b)

pfk] =]:Lp(q[k])> t=1,--- 7Nca (5¢)
Hp/fk]_pztk*l]HgD<l_ ztk])’ i=1,---,Ng (5d)
H’r[k] - pz[k] H = fmim 1= 1a e 7N67 (56)

where F,(-) and F’(-) are forward kinematics functions to
compute r and p’, S* is a binary variable representing the
predefined contact sequence, D is the maximum allowable
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Fig. 4: The CDM-MPC dynamic planning and control framework. (i) The CDM-based kinodynamic motion planner produces the
centroidal momentum reference trajectory. (ii) The real-time MPC controller provides accurate trajectory tracking and fast replanning under
disturbances. (iii) The centroidal moment-based IK solves whole-body trajectory without simplifying leg dynamics. (iv) The landing heuristic

controller guarantees robust landing stabilization.

distance between consecutive timesteps, &min 1S the minimal
distance between r and p’. Of note, Eq. (5d) limits the stepsize
of each contact point while avoiding the movement of the
contact point which is in contact. Eq. (5e) is an approximate
collision avoidance constraint to keep the minimal safety
distance without adding computational complexity.

The dynamics constraints include

Nc
hiy = E(Pfk] =) < o (6a)
i=1
1Y
Fiw) = EZ Foer (6b)
Fom ZB 1pi=1, Neyj=1,-- Ny, (60)
ﬂ[k] 7::15"'7N67j:17"’7Nd7 (6d)
i H < Sy, =10 N (6e)

where the unit vector v/ denotes the j* edge of the friction

pyramid at the i*” contact point, fyay is the maximum contact
force for each contact point. The complete formulation is as
follows:

min

N /N 2 . 2
in 3 (3 [Fiw |+ loal® + [oa] -+ ldoal® + law - a*1”
|\ S plk] [¥] [£] [k] [k] (7
s.t. Egs. (5) and (6)
where the obJect function includes (i) a smoothness cost

|71k H + Hh k] H which penalizes for the rate of change in

centroidal momentum; (ii) a contact force cost ZZ 1 H I Plk] H
that mlmmlzes the contact force; and (iii) a tracking cost

H —-q H + Hq[k H to regularize the solution around the
nommal posture g*.

B. Real-time MPC Controller

To achieve real-time replanning after the launching phase,
a MPC controller is designed by simplifying the trajectory
planning schema Eq. (7) for computing efficiency improve-
ment. Diverging from other MPC formulations [11,26-28],
our MPC controller design accounts for non-constant leg

inertia throughout the flight phase and accurately manipulates
the body pose through actuated CCRBI regulation [34].

1) Centroidal Inertia Decomposition: In centroidal dynam-
ics, the average spatial velocity is defined as [33]:

h=“I,(q)@, (8)

where @ is the average angular velocity of CoM, “I},(q) €
R3*3 is the rotational part of the CCRBI, defined as the sum
of all the link inertia projected to the CoM, and can be divided
into the floating-base and actuated parts:

“I(q) = Xn(9)"IX1(q)
I, 0

=-X7 Xn+ X Xn (9)

0 Iy,
=°I] +°I}(q),

where X, projects motion vectors from centroidal coordinate

frame to link coordinate frames, I; is the spatial inertia for

link ¢ with ¢ = 1 refers to the body link, Ny, is the number of

links. Within CCRBL, “I7 3 1s unactuated and invariant whereas

“1 ?(g) changes according to the leg configuration.
Combining Eq. (9) with Eq. (8), we obtain:

h="I4(q)@ = (“I, + “I}(q)) @

which indicates that although h remains conserved in the flight
phase, the average angular velocity @ can be regulated by
manipulating the actuated part “I¢(g) of the CCRBI, thereby
influencing the overall body posture.

2) MPC Formulation: “I{(q) has a complex nonlinear
relationship with the robot configuration q. For simplification,
we consider the actuated leg as a constant density cuboid with
variable dimension, resulting in a diagonal inertia matrix that
can be estimated through the leg length &, defined as

(10)

E=r—0p. (11)

Furthermore, we define the Euler angle vector between the
CoM coordinate frame and the leg length vector £ as 0,
expressed in the X-Y-Z convention. Since the floating-base
part maintains a constant inertia “'I i during the motion, we
have:

“I=“I] + “Ii ~ “I] + RO)" I¢RO),  (12)
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where
_ ke 0 0 ][lgl® o o0
Ie=| 0 ke O 0 J¢* of, a3
0 0 ke 0 0 1

and R(-) represents the transformation from Euler angles to
a standard rotation matrix, k¢ = diag(kei, keo, kes) is a
diagonal matrix that can be calibrated with the multi-body
model of actuated leg.

Define the integral of @ with time as equimomental ellipsoid
orientation £ € R3*1:

to
L) — L,y = f

to _ _ _1
o dt :J CH 421 e (14
t1 t1
Discretize Eq. (14) at k** time interval and utilize approx-
imated inertia Eq. (12), we can have the following equality

constraint:

k ~ — —1
Ly = Y (°1f + ‘RO R©) by + Loy (19)
i=1

Choosing the set of decision variables as:

D™ = {rp, Fxy Fiags Liags hisgs Biigs £ Pl By

(16)
Vizlﬂ"'7Nc:.j=17"'7Nd7k=1,"',N}E]RE)SXN,

we formulate the real-time MPC as follows:

NofNew o2 o s g2 2
e 53 (Sl st <) e~ tal”
s.t. ) . Egs. (5d), (5e), (6a) to (6e) and (15)

This formulation utilizes the feedback signal from the state
estimator as the initial value. While similar to the trajectory
optimization problem Eq. (7), it eliminates g, ¢ in deci-
sion variables, along with the complex nonlinear constraints
Eqgs. (5a) to (5¢). These modifications lead to a significantly
faster convergence speed. Lo and L, are the manually
specified equimomental ellipsoid orientation at the first and
last time intervals.

C. Centroidal Momentum-based IK

To accurately track the optimized centroidal momentum and
equimomental ellipsoid orientation obtained from the MPC,
we designed a centroidal momentum-based IK method. A
primary challenge in mapping the centroidal trajectory is the
angular velocity of the frame attached to the CoM can not
be integrated due to the non-constant nature of CCRBI as
introduced before [5].

1) Instantaneous Mapping Method: To address this issue,
our initial approach first maps the centroidal momentum to
general velocity ¢ based on the previous general position g™,
and then integrates ¢ to obtain new general position g, resulting
in an optimization problem in each control cycle:

min Wen, |[H™ — A(g)d| + W44l +Wqlq—q*|

9.9

s.t. q=q"° +qAt (18)
r = F(q)
P =F,(q)

where the superscript [-]™" is the optimized value of a variable
from the MPC, H is defined in Eq. (2), ¢* is the nominal

posture of the robot. W,,, W,, and W, are weighting
matrices.

2) Simplified Mapping Method: However, simultaneously
solving for ¢ and ¢ leads to slow computational speeds.
Therefore, we simplify the problem by choosing ¢ as the only
decision variable and solve g through integration.

H;_m W | H™ + H™ — A(q)d| + W, 4|

.. Jg = po + pe

The cost function of this simplified optimization problem ac-
counts for the centroidal momentum and generalized velocity
while the constraint limits the foot endpoint velocity. p4 is the
desired foot endpoint speed acquired from the landing heuristic
controller (to be introduced next),

/')aug _ kp (pmpc _ pt'k)

is a feedback augment to improve the foot endpoint trajectory
tracking where the superscript []fk denotes a variable calcu-
lated through forward kinematics.

Hae — [k'r (,,.mch _ ,,.fkT), kR<Rﬂ<TR*

(20)

_ R*TRﬂ()V]T (21)

is a feedback augment to improve the CoM and torso orienta-
tion trajectory tracking, where R* stands for the nominal torso
orientation expressed as standard rotation matrix, and (-),, is
the mapping from SO(3) to R3, k,, k., kr are the feedback
gains.

D. Landing Heuristic Controller

The landing angle @ and leg length £ are critical for
landing stability, and thus are controlled by the PD feedback
controllers. As the CoM is uncontrollable in the air, we control
the foot endpoint position to achieve the desired landing angle
and leg length, the control law is designed as follows:

§des _ é-mpc + kg (gmpc o fest) + kg (émpc - éest)
gdes — gmpe + kz (empc o 0est) + kz (émpc _ éest) (22)
pdes _ rest + HédesH / Hedes” odes

where the superscript [-]* is the estimated value of a variable

from the state estimator, the optimized leg length £™P¢ is
calculated with MPC decision variable set '™ and Eq. (11),
which is then utilized to calculate the optimized landing angle
ompe, kg, kfi, kz, kg are feedback gains.

E. Whole-body Controller

Our study employs a typical weighted WBC controller to
regulate the movements of the entire robot [35]. Distinct
weights are set for tracking the trunk and foot trajectories of
the robot. The robot’s reference positions and velocity trajecto-
ries are obtained through the centroidal momentum-based IK,
while the reference accelerations are derived by differentiating
velocities. Additionally, we integrate a constraint in line with
the law of conservation of momentum [36], aiming to achieve
improved tracking of the centroidal angular momentum. This
integration enhances the robot’s dynamic balance and stability
during complex maneuvers.
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IV. VERIFICATION

To rigorously evaluate the efficacy of the proposed CDM-
MPC framework, simulations and experiments were executed
using the KUAVO bipedal robot platform. The dynamic simu-
lator was developed in the Drake simulation environment [37]
and utilized the KUAVO’s detailed multibody model. Besides
incorporating the mass and inertia parameters reflecting the
physical robot’s specifications, the simulator also accounted
for the torque saturation and motion range of each mo-
tor, control frequency, and measurement noise, as described
in Sec. II-A. Physical validation trials were carried out on
the physical KUAVO platform. Main control parameters are
summarized in Tab. II.

Four test cases were designed as follows: (i) Case 1:
we compared the disturbance rejection performance of the
proposed CDM-MPC method with a baseline SRBM-MPC
method during in-place jumping; (ii) Case 2: we studied
the robustness of proposed landing controller with variable
forward jumping velocities; (iii) Case 3: we validated the pro-

TABLE II: Planing & Control Parameters

Group Parameters Value
Step time 50 ms
Horizon N 2s
KMP Egq. (7) Simax 2000N
Emin 0.4m
Solve time 1~10s
Step time 10 ms
Horizon N 1s
Pn Smax 2000N
Real-time MPC Egq. (17) Enin 0.4m
ken, kea, kes 0.51,0.62,0.07
Solve time ~ 20 ms
CMIK Egq. (18) Solve time ~ 2.5 ms
Solve time ~ 1 ms
CMIK Eq. (19) kp ke ke  [10.0,10.0,1.0] # 15
kS, kS [0.1,0.03] % 13
Landing Eq. (22) K2, kG [0.5,0.2] % 15
Solve time < 0.1 ms

030 (a) x-axis (b) y-axis (c) z-axis
—— fitting curve ~—— fitting curve ~—— fitting curve
0251 @ sample data ® sample data ® sample data
g 0209 Ke2=0.62
oL 0.15 ke1=0.51
£ & Kes=0.07
= 4
<00 Wm-.
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005 020 025 030 035015 020 025 030 03505 020 025 030 035
€17 m?)

Fig. 6: Inertia parameter calibration results. The x and y axes
components of T¢ has linear relationship with |£||%, while the z axis
component of I¢ is invariant.

posed framework on the physical KUAVO robot in a jumping
experiment; and (iv) Case 4: we explored the versatility of
the framework by applying it to walking locomotion.

A. Inertia Parameter Calibration

To calibrate the inertia parameter matrix k¢ in Eq. (13), 20
robot configuration data points were collected in the simulator
with different leg lengths from 0.4 to 0.6 m. Utilizing the
calculation of actuated part “I{(q) of the CCRBI in Eq. (9)
as ground truth, Eqs. (12) and (13) are utilized to calculate the
calibration matrix k¢. The calibration results are illustrated in
Fig. 6, where the component of I in x and y axes have an
obvious linear relationship with |||, while the component
in z axis is almost invariant to the changes of leg length.
Subsequently, the parameter matrix is calculated from the
sampled data by leveraging a linear regression method. The
calibrated parameters are included in Tab. II.

B. In-Place Jumping Simulation

To verify the effectiveness of the CDM-MPC method in
rejecting disturbances, we compared it with a baseline SRBM-
MPC method. The simulation results are shown in Fig. 5.
Both methods employed the same optimized in-place jumping
trajectory from the kinodynamic motion planning. At the
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Fig. 5: Casel (Simulation): Disturbance rejection performance study during in-place jumping. (a) The SRBM-MPC method cannot
maintain the robot’s stability when subjected to disturbance torque, leading to its collapse. (c) Conversely, the CDM-MPC method preserves
the robot’s stability throughout the entire flight phase, culminating in a successful landing. (b)(e) depict the joint configuration of hip pitch
and knee pitch joints while (c)(f) depict the pitch angle of the torso and the CoM height for both methods, respectively.
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Fig. 7: Case2 (Simulation): Continuous forward jumping with
increasing jumping velocities. (a) CoM and foot trajectory of the
robot during the process. (b) Corresponding estimated velocity.

apex of the robot’s flying phase, a perturbing torque with a
magnitude of 20 Nm with a duration of 0.1 s was applied at
the robot’s torso as an unknown disturbance.

As shown in Fig. 5a, with the SRBM-MPC method, the
body of the robot gradually tilts after the injected disturbance
during the flight phase, resulting in an unstable landing.
In contrast, as shown in Fig. 5d, the angular momentum-
based control framework, which takes into account leg inertia
changes, facilitates refined control over the robot’s posture.
During the flight phase, both body and leg postures are dynam-
ically adjusted in accordance with a trajectory generated by
the CDM-MPC and the momentum-based IK. This approach
improves the in-flight disturbance-rejection capability of the
robot, ensuring a stable landing.

C. Forward Jumping Simulation

In the forward jumping simulation, a range of initial jump
trajectories corresponding to velocities of 0.5, 1.0, 1.5,2.0 m/s
were provided to serve as starting points for optimization.
The CDM-MPC algorithm is designed to automatically select
the trajectory that aligns most closely with the commanded
velocity as its initial guess, thereby improving the efficiency
of the trajectory planning process. The robot’s key perfor-
mance metrics and jumping velocity commands throughout the
jumping sequence are illustrated in Fig. 7. The corresponding
visualization is shown in Fig. 1.

The results demonstrated (i) the robustness of the landing
controller which makes subtle adjustments to regulate the
landing angle as the robot descends (ii) the capability of the
CDM-MPC framework to adaptively generate a range of jump
trajectories from a pool of precomputed offline samples, facil-
itating smooth transitions between various jumping velocities.

D. Physical Jumping Experiment

In the experiment, we validate our proposed jumping frame-
work using KUAVO, our full-sized humanoid robot platform,
as detailed in Sec. II. As shown in Fig. 8b, the IMU-measured
acceleration curve indicates significant impacts on the robot’s
torso during both the launching and landing phases. The
contact forces are derived directly from joint current readings,
which are significantly affected by joint current noise at the
moment of landing, resulting in notable spikes. Despite these
challenges, the robot’s stable landing performance showcases

(a) Key framés in experiment.
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Fig. 8: Case3 (Experiment): Continuous in-place jumping on
physical KUAVO robot. The KUAVO robot executes three vertical
jumps of approximately 0.28 m and lands stably with the proposed
jump control framework.
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Fig. 9: Case4 (Experiment): Apply the proposed framework
for walking control. The KUAVO robot achieves stable walking
performance with a speed of 0.6 m/s.

our control method’s robustness to impacts and noise, high-
lighting our framework’s effectiveness in physical humanoid
robot jumping dynamics. The keyframes are shown in Fig. 8a.

E. Walking Experiment

As shown in Fig. 9, to demonstrate the generalizability
of our framework, we applied it to walking control. The
robot walks stably at 1.2 m/s in simulation and 0.6 m/s on
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hardware. This verifies that the framework can be extended to
other locomotion modes.

V. CONCLUSION

In this paper, we have presented an integrated dynamic
planning and control framework (CDM-MPC) for the jumping
motion of bipedal robots. This framework considers centroidal
momentum in both dynamics planning of the launching phase
and online tracking control of the flight phase, and it integrates
a robust landing to ensure stability. Altogether, the proposed
framework enables agile and continuous jumping motions on
full-sized bipedal robots. We validated the effectiveness of this
framework based on a novel full-sized bipedal robot KUAVO
in both realistic simulations and real-world experiments and
confirmed its applicability to other locomotion modes, such as
walking. Future directions include generalizing the framework
for unified walking, running, and jumping control with smooth
transitional behavior and integrating reinforcement learning-
based methods for performance and robustness improvement.
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